
2020 UCC Coding Competition – Solutions and Answer Key

Answer Key – The test data is still available on the main contest website.

 Test Case 1 (1/10) Test Case 2 (4/10) Test Case 3 (5/10)
Problem 1 3 241 236
Problem 2 82 84 266
Problem 3 24 760 245
Problem 4 529 426 181
Problem 5 4 69 57

Problem 1 – Snowstorm

This problem can be solved by looping through the two strings simultaneously character by
character, and keeping a counter of how many times both the strings have a ‘0’ in the same
spot.

Python 3 Implementation

n = int(input('')) # Take the necessary inputs
a = input('')
b = input('')
ctr = 0 # Start a counter
for i in range(n): # Loop through the strings

if a[i] == '0' and b[i] == '0': # If the character in both strings
 ctr += 1 # are both ‘0’, increment a counter

print(ctr) # Print the counter value

Problem 2 – Optimal Skiing

To solve this problem, we must calculate the time required for each of the ski lift routes, and
find the minimum.

To do this, we loop through all of the ski lift routes. For each of these ski lift routes, we can use
another loop to find the total time required for that route.

While checking each route, store the duration of the shortest route found so far. By the end,
this will be our answer.

Python 3 Implementation

n = int(input(''))

minRoute = 1000000 # Initialize to a sufficiently high value

for i in range(n):
 l = [int (i) for i in input().split()] # Input a line into a list
 # and cast everything to int
 currentRoute = 0

 for j in range(l[0]): # l[0] is number of lifts in route
 currentRoute += l[j+1] # l[1] to l[j] are lengths of each lift

 if currentRoute < minRoute:
 minRoute = currentRoute

if minRoute>=1000: # This prints the last 3 digits when over 1000.
 print(minRoute%1000)
else:

print(minRoute)

Problem 3 – Farmer Bob

This is a three-part problem:

1. Find the largest gap in the trees
2. Find the largest tractor that can fit through this gap
3. Calculate how many trips are needed

For the first part, we can loop through the given string and keep a counter as follows: If a
character is a ‘0’ or an ‘X’, we add 1 to the counter. If a character is a ‘1’, we reset the counter
to zero. Observe what happens with a few examples:

String: 000XX1
Counter value: 123450

String: 10X0111X0
Counter value: 012300012

String: 0X0100X101010XXXX1X1 (from Test Case 1)
Counter value: 12301230101012345010

Notice that the largest value achieved by the counter overall represents the length of the
largest consecutive block of ‘0’s and ‘X’s, which is the largest gap in the trees that we want.

For the second part, finding the largest tractor that can fit through the gap is made relatively
straightforward as the list of tractors was sorted. We can just loop through the list of tractors
and store the value of the largest tractor that works so far, until we hit a tractor that is too big,
at which point we can break out of the loop.

For the third part, notice that the number of trips required was just the amount of hay divided
by the largest usable tractor, rounding up. The rounding upwards can be done using the ceiling
function, which returns the smallest integer greater than a value.

Python 3 Implementation

STEP 0: Taking Inputs and Declaring Variables

import math
h = int(input(''))
t = int(input(''))
tractors = [int(i) for i in input().split()]
m = int(input(''))
s = input('')
maxConsecutive = 0
ctr = 0

STEP 1: Finding largest gap

for i in range(m):
 if(s[i] == '0' or s[i] == 'X'):
 ctr += 1
 maxConsecutive = max(maxConsecutive, ctr)
 else:
 ctr = 0

STEP 2: Finding largest tractor that fits

biggestTractor = 0
for i in range(t):
 if(tractors[i] <= maxConsecutive):
 biggestTractor = tractors[i]
 else:
 break

STEP 3: Calculating trips required and printing answer

answer = math.ceil(h/biggestTractor)

if answer >= 1000:
 print(answer%1000)
else:
 print(answer)

Problems 4 and 5 are more sophisticated and were intended for contestants with more
knowledge and experience with computer algorithms.

Problem 4 – Bubble Tea

This problem can be solved using Dynamic Programming. We can build an array, dp[], where
dp[i] stores the minimum cost of purchasing the first i bubble teas. Let the array c[] store
the cost of each bubble tea, in order. By definition:

dp[0] = 0
dp[1] = c[1]
dp[2] = c[1] + c[2] – 0.25*min(c[1], c[2])

Now, the key observation is that no matter what, the minimum cost of purchasing the first k
bubble teas is equivalent to the maximum of three options:

• The cost of buying the kth bubble tea plus the minimum cost of purchasing the first k-1
bubble teas,

• The cost of buying the kth and (k-1)th bubble teas together, applying the 25% discount,
plus the minimum cost of purchasing the first k-2 bubble teas, and

• The cost of buying the kth, (k-1)th and (k-2)th bubble teas together, applying the 50%
discount, plus the minimum cost of purchasing the first k-3 bubble teas.

Applying this observation to calculate the values of dp[3] to dp[n] will give us the answer of
the minimum cost to buy all of (the first n) bubble teas.

Pseudocode Implementation

Input n, and Input the next n integers into c[]

Declare array dp[] of size n+1

dp[0] = 0
dp[1] = c[1]
dp[2] = c[1] + c[2] – 0.25*min(c[1], c[2])

for i from 3 to n:
 dp[i] = max(
 c[i] + dp[i-1],
 c[i] + c[i-1] – 0.25*min(c[i], c[i-1]) + dp[i-2],
 c[i] + c[i-1] + c[i-2] – 0.5*min(c[i], c[i-1], c[i-2]) + dp[i-3]
)

if dp[n] >= 1000:
 print(dp[n]%1000)
else:
 print(dp[n])

Rectangle

Stamp

Stamp

Problem 5 – Public Transport

This is a graph problem. Each subway line represents a node, and each escalator represents a
directed edge connecting a pair of nodes. We are looking for the distance between two nodes
on this graph.

One way to do this is with a well-known algorithm called Breadth-First Search (BFS). If
unfamiliar with BFS, it is recommended to do some reading on it before attempting the problem
or reading the below implementation.

Pseudocode Implementation

Input the integers L, start, end, N

Declare an array of dynamically-sized integer arrays, adj[][], with size L

For i from 1 to N:
 Input a pair of integers, a and b
 Add b to the dynamic array adj[a]

Declare an integer array, dist[], of size N+1, with all values 0
Declare an empty First-In-First-Out Queue of integers, q

Add start to q

While q is not empty:
 cur = front of q
 for nxt in adj[cur]:
 if dist[nxt] == 0:
 add nxt to back of q
 dist[nxt] = dist[cur] + 1

print(dist[end])

