
Page 1 of 2

UCC Coding Competition '21 P1 - Counterfeit Detection

In your strange local currency, there should only be , and coins. Unfortunately, a counterfeiter just added a
whole bunch of fake coins into circulation!

Your job is to determine how many counterfeited coins are mixed into a row of coins. This is more difficult than it looks.
The coins are rectangular, so a row of coins looks something like this:

In order to count all the coins, you use a scanning machine that reads the digits on the top of the coins one by one. For
the row of coins shown above, your machine will produce the string 622544252 .

Given a sequence of digits generated by the machine, please determine how many of the coins are counterfeit coins.
As there are no coins in circulation, you can assume that if you see 25 in the sequence, it represents a non-
counterfeit coin. Otherwise, if you see a 2 in the sequence that is not followed by a 5 , you can assume that it is
a counterfeit coin.

Input Specification

The first and only line of input will contain a sequence of digits from your coin-scanning machine, such as 622544252 .

Output Specification

Please output the number of counterfeit () coins in the row of coins.

Constraints and Partial Marks

For all test cases, the string is characters or fewer in length.

Additionally, for out of available marks, there are no coins, so the string doesn't contain the digit 5 .

Sample Input

2256624425252

Sample Output

Time Limit: 2.0s Memory Limit: 256M

$4 $6 $25

$2

$2

$5

$25

$2

999

4 10 $25

Kevin Liu
Spring Coding Bowl ’21 P1 - Counterfeit Detection�

Page 2 of 2

3

Explanation for Sample Output

The sample input represents this row of coins:

In this row, there are three counterfeit coins.$2

Page 1 of 2

UCC Coding Competition '21 P2 - Emerald Exchange

You are walking along the street when a street vendor offers you a special deal. He has a row of emeralds with
different sizes. Each emerald has an integer weight between and , inclusive, and the weights are clearly labelled for
each emerald. However, the vendor tells you that you should not touch or buy the emeralds with odd-numbered
weights as they have dangerous magical properties.

The vendor offers you to buy any number of consecutive emeralds from his row, as long as that selection of emeralds
does not include any odd-weighted emeralds.

What is the largest total weight of emeralds you can buy with one purchase, following the rule above?

Input Specification

The input will consist of two lines. The first line contains , the number of emeralds in the vendor's row. The second line
contains space-separated integers between and inclusive, the weight of each emerald in the order that the
vendor has them on display.

Output Specification

Please output one integer: the maximum possible sum of the weights of the emeralds that can be purchased as
described above.

Constraints and Partial Marks

For of the available marks, .

For the remaining marks, .

Sample Input

13
2 3 4 4 5 6 1 2 2 2 1 8 2

Sample Output

10

Time Limit: 2.0s Memory Limit: 256M

N

1 100

N

N 1 100

5 10 1 ≤ N ≤ 3000

5 1 ≤ N ≤ 105

Kevin Liu
Spring Coding Bowl 2021 P2

Kevin Liu
Spring Coding Bowl ’21 P2�

Kevin Liu
Spring Coding Bowl ’21 P2 - Emerald Exchange�

Page 2 of 2

Explanation of Sample Output

Buying the two rightmost emeralds, with sizes and (sum =), is the optimal purchase.

There are many suboptimal alternative purchases. These include:

Buying the three consecutive emeralds with size (sum =),
Buying two of the three consecutive emeralds with size (sum =),
Buying the two consecutive emeralds with size (sum =), or
Buying a single emerald of size , , , or .

8 2 10

2 6

2 4

4 8

2 4 6 8

Page 1 of 2

UCC Coding Competition '21 P3 - Long Pizza

You are in charge of adding cheese topping to a pizza prepared for a special customer. This pizza is a very long
rectangular strip. It is divided into slices, numbered to from left to right. To add cheese topping to the pizza, you
have a special machine that can add unit of cheese on each slice in a consecutive group of slices (for example, you can
add unit of cheese on each slice between slice and inclusive, adding a total of units of cheese). Each slice can
carry an unlimited amount of cheese.

You plan to run the machine times, each time adding unit of cheese to each slice in a given range.

The customer is on a diet. When he eats the section of pizza from slice to slice , inclusive, he would like to know how
many units of cheese he is consuming.

NOTE FOR PYTHON USERS: If your program receives TLE (time limit exceeded), you should try submitting using the
PyPy interpreter: when you are submitting your code, try using "PyPy 3" or "PyPy 2" as the language, instead of "Python
3" or "Python 2".

Input Specification

The first line will contain the integer , the length of your long pizza.

The second line will consist of two space-separated integers and , indicating that the customer is planning to eat
every slice between slice and slice inclusive.

The third line will contain the integer , the number of times you plan to run the topping machine.

The following lines will each describe one planned run of the topping machine using 2 space-separated integers,
and , indicating that the machine will add unit of cheese onto each slice between slices and , inclusive.

Output Specification

Please output the total number of units of cheese on all of the slices the customer is planning to eat.

Constraints and Partial Marks

For of the available marks, and .

For the remaining marks, and .

Sample Input

Time Limit: 2.0s Memory Limit: 256M

N 1 N

1

1 2 4 3

R 1

x y

N

x y

x y

R

R l

r (l ≤ r) 1 l r

4 10 R ≤ 1000 N ≤ 105

6 R ≤ 4000 N ≤ 107

Kevin Liu
Spring Coding Bowl ’21 P3 - Long Pizza�

Page 2 of 2

10
3 5
3
2 6
4 5
3 3

Sample Output

6

Explanation of Sample Output

After running the machine three times, the amount of cheese on each slice of pizza is as follows:

Slice #: 1 2 3 4 5 6 7 8 9 10
Cheese: 0 1 2 2 2 1 0 0 0 0

Therefore, slices have a total of units of cheese.3 − 5 6

Page 1 of 3

UCC Coding Competition '21 P4 - Trampoline Jump

The Fibonacci Sequence is a mathematical sequence where the first and second terms are 1, and each term after that is the
sum of the two previous terms. More formally, if denotes the th term of the Fibonacci Sequence, then ,
and for all integer .

The modulo (or) operation is an operation represented by the symbol. The expression denotes the
remainder when the positive integer is divided by the positive integer . For example, , because the remainder
when is divided by is . The modulo operator is available in most programming languages using the operator % - for

example, the line int a = 7%2; in C++ will set a to be 1.

You have found yourself at the first house of a long street. There are a total of houses along this street, numbered
to . You are trying to travel from the first house to the last house as fast as possible.

You can always walk from one house to an adjacent house (i.e. from house to house or house , if they
exist). This takes one minute.

At each house, there is also a trampoline that allows you to travel a larger distance. In particular, at the th house, there
is a trampoline with strength . Using the trampoline also takes one minute, and from house , you can use the
trampoline to jump either backwards to house (as long as) or forwards to house (as long as

).

You have been able to reverse-engineer a pattern of the values of for all the houses:

 for all ,

where represents the th term in the Fibonacci Sequence and represents the modulo operation, as defined at the
beginning of the problem.

For reference purposes, , , , , , , , and .

Please find the minimum number of minutes you need to travel from house to house .

NOTE FOR PYTHON USERS: If your program receives TLE (time limit exceeded), you should try submitting using the
PyPy interpreter: when you are submitting your code, try using "PyPy 3" or "PyPy 2" as the language, instead of "Python
3" or "Python 2".

Input Specification

The input will consist of one integer, , the number of houses on the street.

Output Specification

Please output the minimum number of minutes you need to travel from house to house .

Time Limit: 2.0s Memory Limit: 256M

fi i = = 1f1 f2

= +fk f(k−1) f(k−2) k > 2

mod % a % b

a b 7 % 2 = 1

7 2 1

N 1

N

w w − 1 w + 1

i

ai i

i − ai i − ≥ 1ai i + ai

i + ≤ Nai

ai

= (% 2021) + (i % 50)ai fi 1 ≤ i ≤ N

fi i %

= 2a1 = 3a2 = 5a3 = 7a4 = 10a5 = 14a6 = 20a7 = 356a125

1 N

N

1 N

Kevin Liu
Spring Coding Bowl ’21 P4 - Trampoline Jump�

Page 2 of 3

Constraints and Partial Marks

For of the available marks, .

For the remaining marks, .

Sample Input 1

9

Sample Output 1

3

Explanation For Sample Output 1

The first terms of the sequence are and . To travel from house to house , the
optimal pattern of moves is:

Move : Jump from house to house . This is possible as .
Move : Jump from house to house . This is possible as .
Move : Walk from house to house . This is possible as .

Every move takes minute, so the output is 3 .

Sample Input 2

27

Sample Output 2

4

Explanation For Sample Output 2

One way to reach house in moves is as follows:

3 10 N ≤ 400

7 N ≤ 5 ⋅ 105

9 ai 2, 3, 5, 7, 10, 14, 20, 29, 43 1 9

1 1 3 1 + = 1 + 2 = 3a1

2 3 8 3 + = 3 + 5 = 8a3

3 8 9 8 + 1 = 9

1

27 4

Page 3 of 3

Move : Jump from house to house . This is possible as .
Move : Jump from house to house . This is possible as .
Move : Walk backwards from house to house . This is possible as .
Move : Jump from house to house . This is possible as .

1 1 3 1 + = 1 + 2 = 3a1

2 3 8 3 + = 3 + 5 = 8a3

3 8 7 8 − 1 = 7

4 7 27 7 + = 7 + 20 = 27a7

Page 1 of 4

UCC Coding Competition '21 P5 - Woodcutting Game

After tearing down your pig barn, you and your friend Tyler have to dispose of two long rectangular wooden boards.
You have to cut the boards into smaller pieces. Because this is boring, you devise a game to play to make things more
interesting.

The two -dimensional rectangular boards have heights of either or and integer widths. For example, one board
can be a board, and another can be a board.

You and Tyler will take turn cutting the rectangular boards, and you will go first. Each of the cuts you make must turn
one rectangular board into two smaller rectangular boards, each with an integer height and width. The cuts must be
made either horizontally or vertically.

In particular, when it is your turn, you have two options as follows. Note that both options leave your opponent with
two rectangles, so the game can continue.

Option 1: Choose one board to discard entirely, and then cut the other board into two smaller integer-dimension
rectangles however you want.

The below diagram illustrates this option (but does not include all possible ways to cut the rectangle).

Time Limit: 2.0s Memory Limit: 256M

2 1 2

2 × 2021 1 × 5

Kevin Liu
Spring Coding Bowl ’21 P5 - Woodcutting Game�

Page 2 of 4

Option 2: Choose one board to leave untouched, cut a rectangular piece off the other board, and discard that
piece.

If you choose Option , you must EITHER cut off the height OR cut any integer between and (inclusive) off
the width of the board that you have chosen to cut.

The below diagram illustrates this option (but does not include all possible ways to cut the rectangle).

You move first. The player who leaves the other player with two by boards that can no longer be cut further
is declared the winner.

You are deciding whether to place a bet against Tyler, so you want to know whether it is possible for you to
guarantee a win, given the starting dimensions of the two boards.

NOTE FOR PYTHON USERS: If your program receives TLE (time limit exceeded), you should try submitting using the
PyPy interpreter: when you are submitting your code, try using "PyPy 3" or "PyPy 2" as the language, instead of "Python
3" or "Python 2".

Input Specification

The input will be one line, containing four space-separated integers: and , indicating that the two boards
you start with are and .

Output Specification

2 1 1 10

1 1

, , ,h1 w1 h2 w2

×h1 w1 ×h2 w2

Page 3 of 4

Output the character W if you can force a win, or L if your opponent Tyler can force a win.

Constraints and Partial Marks

For of the available marks, and .

For another of the available marks, and .

For another of the available marks, and .

For the remaining marks, and .

Sample Input 1

2 2 1 3

Sample Output 1

W

Explanation for Sample Output 1

The sample input indicates that you start with a board and a board.

On your first turn, if you ignore the board, and cut off the width of the board to leave a board (this
is permitted in Option 2), Tyler will get a board and a board on his turn.

It is easy to see that no matter how Tyler plays his move, he will leave you with at least one board. As such, on
your second turn, you just need to cut a board into two boards, and discard the other board (this is
allowed in Option 1). Now, Tyler is left with two boards that cannot be cut further, so he loses, and you win.

Since you are able to force a win, the output is W .

Sample Input 2

2 2 1 1

Sample Output 2

2 10 = = 1h1 h2 , ≤ 10w1 w2

2 10 = = 1h1 h2 , ≤ 300w1 w2

2 10 1 ≤ , ≤ 2h1 h2 , ≤ 10w1 w2

4 1 ≤ , ≤ 2h1 h2 , ≤ 300w1 w2

2 × 2 1 × 3

2 × 2 2 1 × 3 1 × 1

2 × 2 1 × 1

1 × 2

1 × 2 1 × 1

1 × 1

Page 4 of 4

L

Explanation for Sample Output 2

Similar to the example above, if you start with a board and a board, no matter what you do, you will always
leave Tyler with at least one board. Tyler can use Option 1 and cut the board into two boards and
discard the other board, which is a loss for you.

Since you cannot force a win (instead, Tyler can force you to lose), the output is L .

2 × 2 1 × 1

1 × 2 1 × 2 1 × 1

