
2021 Spring Coding Bowl – Official Solutions 
 
Problem 1 – Counterfeit Detection 
 
One solution for this problem is to simply take the number of ‘2’ characters and subtract the number of 
‘5’ characters.  
 
Python 3 Solution: 
 
s = input() 
print(s.count('2')-s.count('5')) 

 
 

Problem 2 – Emerald Exchange 
 
For this problem, loop through the list of values once while keeping a counter. If the currently-
considered value is even, add that value to the counter. If the currently-considered value is odd, set the 
counter to 0. The answer will be the largest number that the counter achieves. 
 
Python 3 Solution: 
 
n = int(input()) 

emeralds = [int(i) for i in input().split()] 

ans = 0 

counter = 0 

for i in range(n): 

if emeralds[i]%2 == 0: 

    counter += emeralds[i] 

        ans = max(ans, counter) 

else: 

        counter = 0 

print(ans) 

 
 

Problem 3 – Long Pizza 
 
For 4 partial marks, it suffices to simply store an array tracking the amount of cheese on each slice, and 
every time the machine is run, adding 1 to the amount of cheese in the machine’s range. However, the 
worst-case time complexity of this approach is 𝑂(𝑁𝑅), since for each of the 𝑅 runs of the machine, you 
have to increment up to 𝑁 values. As such, this solution is too slow and does not receive full marks. 
 
Instead, to obtain full marks, each run of the machine should be processed in 𝑂(1) time complexity. 
There are multiple ways in which this can be done. One way is using a prefix difference array, but there 
is also a potentially easier solution: for each run of the machine from 𝑙 to 𝑟, calculate the size of the 
interval within 𝑙, 𝑟 that overlaps with the desired range 𝑥, 𝑦, and simply add the interval sizes together to 
produce an answer.  
 



Python 3 Solution 
 
N = int(input()) 
x, y = map(int, input().split()) 
R = int(input()) 
 
answer = 0 
 
for i in range(R): 
 l, r = map(int, input().split()) 
 answer += max(0, min(r, y) - max(l, x) + 1) 
 # the above expression evaluates to the size of the overlap between the 
       # intervals [l, r] and [x, y].   
 
print(answer) 

 
 

Problem 4 – Trampoline Jump 
 
This problem requires two steps – first, generating the sequence 𝑎1, 𝑎2, … and second, finding the 
shortest possible path to the destination house.  
 
The Fibonacci sequence can be generated from the bottom-up (remembering to take mod 2021 after 
calculating every term to prevent integer overflow), and adding the 𝑖 % 50 term will produce the 
desired values.  
 
In order to find the shortest path to the destination house, observe that the road can be considered as a 
directed graph, with each house as a node. From each node, there are up to four directed edges 
(representing the forward or reverse walk or jump). It suffices to run the Breadth-First Search (BFS) 
algorithm to find the shortest path to the destination.  
 
C++ Solution 
 
#include <bits/stdc++.h> 
using namespace std; 
 
int main() { 
 
    int n; cin >> n; 
    int a [n+1] = {0}, fib [n+1] = {0}, mod = 2021; 
     
    // Generate Sequence 
    for(int i = 1; i <= n; i++){ 
        if(i==1 or i==2) fib[i] = 1; 
        else fib[i] = (fib[i-1]+fib[i-2])%2021; 
        a[i] = fib[i]+i%50; 

} 
 

    // Run BFS algorithm 
    vector<int> visited (n+1); 
    queue<int> q; 
    q.push(1); 
    while(!q.empty()){ 
        int v = q.front(); q.pop(); 
        if(v+1 <= n and !visited[v+1]){visited[v+1] = visited[v]+1; q.push(v+1);} 



        if(v-1 >= 1 and !visited[v-1]){visited[v-1] = visited[v]+1; q.push(v-1);} 
        if(v+a[v] <= n and !visited[v+a[v]]){visited[v+a[v]] = visited[v]+1; q.push(v+a[v]);} 
        if(v-a[v] >= 1 and !visited[v-a[v]]){visited[v-a[v]] = visited[v]+1; q.push(v-a[v]);} 
        if(v==n){ 
            cout << visited[v] << endl; 
            return(0); 
        } 
    } 
} 

 

Problem 5 – Woodcutting Game 
 
A recursive dynamic programming approach can be implemented for this problem. Note that a “winning 
position” means that the player who receives that position has a strategy to guarantee a win, and a 
“losing position” means that the player who receives that position can always be forced to lose. We 
simply need to output “W” if the starting position is a winning position, and “L” if the starting position is 
a losing position. 
 
The array dp[][][][] will store the DP state. In particular, dp[h1][w1][h2][w2] will store the state  
of one h1 by w1 and one h2 by w2 rectangular board in the woodcutting game using the following 
values: 

• 0  if the state has not yet been calculated 

• 1  if the state has been calculated to be a winning position 

• -1 if the state has been calculated to be a losing position 
 
The key observation for this problem and for similar game theory problems is that if at least one of the 
possible moves from a state leads to a losing position, that state is a winning position. Otherwise, if all of 
the possible moves from a state lead to a winning position, that state is a losing position.  
 
Using the above observation, we can recursively fill out the DP table. The recursive base case is 
dp[1][1][1][1] = -1, since by definition, two 1 by 1 boards is a losing position. Since we have an 
array to memorize the recursive function, the time complexity of the program is sufficiently optimized.  
 
C++ Solution 
 
#include <bits/stdc++.h> 
using namespace std; 
 
int dp [3][301][3][301] = {0};  // Initialize DP array 
 
int f (int h1, int w1, int h2, int w2) { 

// If state has already been calculated, return the previously calculated value 
if(dp[h1][w1][h2][w2]!=0) return(dp[h1][w1][h2][w2]);  
 
// Recursive base case 

    if(h1==1 and w1==1 and h2==1 and w2==1) return dp[1][1][1][1]=-1;  
 
    // If any of the possible moves from OPTION 1 lead to a losing position, this state is a       
    // winning position  
    for(int i = 1; h1-i > 0; i++) 
        if(f(i, w1, h1-i, w1)==-1) return dp[h1][w1][h2][w2] = 1;  
    for(int i = 1; w1-i > 0; i++) 
        if(f(h1, i, h1, w1-i)==-1) return dp[h1][w1][h2][w2] = 1;  



    for(int i = 1; h2-i > 0; i++) 
        if(f(i, w2, h2-i, w2)==-1) return dp[h1][w1][h2][w2] = 1;  
    for(int i = 1; w2-i > 0; i++) 
        if(f(h2, i, h2, w2-i)==-1) return dp[h1][w1][h2][w2] = 1;  
 
    // If any of the possible moves from OPTION 2 lead to a losing position, this state is a       
    // winning position 
    if(h1==2) 
        if(f(1, w1, h2, w2)==-1) return dp[h1][w1][h2][w2] = 1;  
    if(h2==2) 
        if(f(h1, w1, 1, w2)==-1) return dp[h1][w1][h2][w2] = 1; 
    for(int k = 1; k <= 10 and w1-k >= 1; k++) 
        if(f(h1, w1-k, h2, w2)==-1) return dp[h1][w1][h2][w2] = 1;  
    for(int k = 1; k <= 10 and w2-k >= 1; k++) 
        if(f(h1, w1, h2, w2-k)==-1) return dp[h1][w1][h2][w2] = 1;  
 
    // Otherwise, this state is a losing position. 

return dp[h1][w1][h2][w2] = -1; 
} 
 
int main() { 
    int h1,w1,h2,w2; cin >> h1 >> w1 >> h2 >> w2; 
 
    // Call the recursive function to find the answer.   
    if(f(h1,w1,h2,w2)==1)cout << 'W' << endl; 
    else cout << 'L'<< endl; 
} 


